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ABSTRACT
Industrial wireless plays a crucial role in cyber-physical system
(CPS) advances for the future vision of smart manufacturing. How-
ever, industrial wireless environments are different from each other
and are different from home and office environments. Hence, indus-
trial wireless channel modeling is essential for the development of
industrial wireless systems. Moreover, millimeter-wave (mmWave)
wireless bands have a high potential to be used for the high data-rates
required for industrial automation reliability, with multiple anten-
nas envisioned to mitigate the high path loss. As a result, in this
work, we introduce a machine learning (ML) based exemplar extrac-
tion approach on mmWave wireless spatial-channel measurements.
The proposed approach processes the measured power-angle-delay-
profiles to cluster them into a number of groups with respect to the
angle of arrival. Then, an exemplar power-delay-profile (PDP) is
extracted to represent each group. The resulting set of exemplars
provide a tractable way to conduct mmWave industrial wireless
systems testing and evaluation by compactly representing various
feature groups. This allows the assessment of wireless equipment
over the exemplars without the need to test over all of the different
instances of wireless channel paths.

Index Terms— Channel modeling, clustering, exemplar chan-
nel, industrial wireless, unsupervised learning

1. INTRODUCTION

In future industrial systems, wireless-communication technologies
will play a critical role in achieving massive connectivity between
various operational components and allowing easier equipment mo-
bility. Industrial physical environments are different than office and
home environments which leads to different wireless channel char-
acteristics such as the achievable delay and reliability [1,2]. Generic
models are being studied for indoor industrial channels such as [3]
where four different categories of wireless channels in indoor facto-
ries are considered. However, various industrial environments differ
from each other in their layouts, types of equipment, and the per-
formed industrial activities. Hence, designing and testing of indus-
trial wireless systems requires knowledge of the channel character-
istics of the corresponding environment [4].

The limited availability of sub-6 GHz wireless spectrum moti-
vated the utilization of millimeter-wave (mmWave) bands for many
new wireless technologies. In July 2016, the United States Federal
Communications Commission (FCC) allocated 3.85 GHz of licensed
spectrum near 28, 37, and 39 GHz for 5G mobile networks, and 7
GHz of unlicensed spectrum from 64–71 GHz that is adjacent to
the existing 57–64 GHz unlicensed Industrial, Scientific, and Medi-
cal (ISM) bands. The channel characteristics in the mmWave bands
are different than sub-6 GHz bands. Moreover, with many licensed
bands, they offer a potential candidate for industrial wireless. As a
result, channel models are required based on measurements taken in
various environments to study the behavior of several technologies
and equipment communicating in the mmWave bands.

The power delay profile (PDP) of a wireless channel captures
the temporal variations of the channel due to multipath components
(MPCs) [5]. The classification and clustering of wireless channels,
depending on the extracted temporal features from the corresponding
PDPs using machine learning (ML) approaches, have been studied
in the literature such as in [6–10]. In these papers, both supervised
and unsupervised learning were used for scenario identification. To
the best of our knowledge, we are the first to use a clustering ML
approach to study the directional impact of the wireless channel and
obtain exemplars that can be used to test devices and technologies
while representing various groups of the measured directions. The
contribution of the paper is introducing the approach, and results that
emphasize benefits of applying the innovative approach over realistic
channel measurements.

In this work, we introduce an unsupervised learning approach
to obtain exemplar PDPs from mmWave channel measurements.
Synthetic-aperture measurements are used to determine the chan-
nel’s power-angle-delay profile (PADP), which characterizes both
the angle-of-arrival and time-of-arrival of received power. Syn-
thetic apertures typically consist of a single antenna element that
is scanned over multiple locations and the complex fields are ac-
quired over the lattice. The spatial characteristics of the channel are
reconstructed in post processing by combining measurements and
applying various phasing combinations, much like a phased array.
Synthetic apertures have a number of benefits for characterizing
spatial channels, including high dynamic range, lower reflectivity
(due to the use of a single antenna element), and lower cost.

The proposed approach serves as a way to compactly represent
various directional feature groups. Moreover, the result of the pro-
posed approach allows the test and assessment of wireless equipment
over the exemplars without the need to test over all of the different
instances of wireless channel paths or to evaluate the performance
over a generic model that does not capture the specifics of a certain
environment. This approach can capture the environmental cases
that may stress wireless device performance and potentially reveal
flaws or deficiencies that can be improved upon in future device de-
sign iterations. To this end, we chose a very challenging propagation
scenario inside the Central Utility Plant (CUP) that generates a lot
of dense multipath reflections. Unsupervised ML is used to partition
the measured PDPs into clusters that correspond to different direc-
tions and to extract canonical PDPs that embody all the salient fea-
tures of each cluster. These exemplars can be used as device stress-
ing design points that can be well replicated in millimeter wave test
chambers or within simulation frameworks to test actual device per-
formance. The exemplars generalize the characteristics of measured
site-specific data without having to resort to a statistical averaging
approach that ultimately yields only benign channel conditions but
also requires extraordinary amounts of measured data. Another ad-
vantage of the proposed ML approach is that it enables the capability
to emphasize or de-emphasize the environmental features that might
be more or less important for testing particular device capabilities.



Fig. 1. The CUP measurement environment

2. PROBLEM DESCRIPTION

In this section, an overview of the data collection process is pre-
sented. The data preparation and the format of the resulting data are
described. Finally, the addressed problem in this work is stated.

2.1. Environment and Data Collection

Measurements were performed in the highly reflective CUP at the
Department of Commerce Boulder Laboratories in 2019. This envi-
ronment consists of large boiler tanks, piping, and numerous racks
of control hardware, as shown in Fig. 1. The vector network ana-
lyzer (VNA) was placed in a small rack located between the transmit
horn antenna and the synthetic aperture receive array. The results
presented in this paper were obtained from measurements over the
WR-28 waveguide band of 26.5 GHz to 40 GHz with a dynamic
range typically on the order of about 90 dB. We positioned a direc-
tional horn transmit antenna to point directly at a bank of switches
and tanks, as shown in Fig. 2. The horn antenna provides 17 dBi
gain, is linearly polarized, and has a 23◦/24◦ 3 dB beamwidth in
the E/H planes. It was oriented upward at an elevation angle of ap-
proximately 15◦. Our synthetic aperture receive array was oriented
toward the switch bank as well, minimizing the line-of-sight compo-
nent. We configured the synthetic aperture [11] to scan a 35-by-35
planar grid with 3mm spacing between the sample points (λ/2 at
40 GHz). The minimum beamwidth of the synthetic aperture ar-
ray response is 2.9◦ attained at 40 GHz in the boresight direction.
Since the array is square, the azimuth and elevation beamwidths are
equal. With this, we reconstructed directional PDPs corresponding
to a beamwidth of 2.9◦ in azimuth and elevation.

Fig. 2. CAD model of the CUP environment. The red lines show the
boresight directions for the transmit antenna and synthetic aperture
array. The transparent rectangular prism corresponds to the boiler
that is opposite of the control panel. The dotted red rectangle shows
the planar synthetic aperture in the environment. The white rectan-
gular prism on the ground corresponds to the VNA.

2.2. Data Preparation and Resulting Data

The S21 parameters are collected by the synthetic-aperture channel
measurement system in 10 MHz frequency increments between 26.5

and 40 GHz at every spatial sample. The S21 parameters are pro-
cessed using true time delay beamforming to steer the array main-
beam as described in [11]. Initially, a low-sidelobe taper is applied
across the aperture that is frequency invariant in the boresight direc-
tion. Then to steer the array mainbeam towards a desired direction,
an additional phase taper is applied across the aperture that varies
linearly with frequency. After coherently combining the product of
measured S21 values and complex beamforming weights across all
the aperture spatial samples, an inverse Fourier transform is utilized
to transform the frequency domain data to the temporal domain. The
result is known as a directional PDP.

Often, it is desirable that the sum of the power patterns of all
the individual beams yields omnidirectional gain. Hence, the point-
ing directions specified at the peak of the mainbeam are chosen sys-
tematically using the approach described in [12] such that all beams
overlap at the 3-dB beamwidth. This algorithm accounts for the fact
that the width of the array mainbeam increases in proportion to the
product of the cosines of the azimuth and elevation scan angles.

2.3. Problem Statement

We denote the PADP instants by h(θ, φ, τ), where θ and φ denote
the azimuth and elevation of the angle of arrival, respectively, and τ
is the delay. The collected data are sampled versions of the PADP,
where θ and φ take discrete values in the ranges θmin ≤ θ ≤ θmax and
φmin ≤ φ ≤ φmax. As a result, the input of our problem is a set,H, of
the PDPs h(θ, φ, τ) for all fixed combinations of θ and φ. The output
of the proposed approach is N disjoint groupsHi, i ∈ {1, N} using
unsupervised ML clustering based on a set of defined features. Each
group is represented by an exemplar PDP denoted by ĥi(τ), which
represents the corresponding groupHi.

3. MACHINE LEARNING APPROACH

In this section, the PDP exemplar extraction approach is detailed in-
cluding the feature selection process and the ML clustering scheme.

3.1. Feature Extraction

Feature-based clustering generally can work with a large set of the
PDPs features while it is only performed over a small set of features,
in this work, to examine the approach and allow easier visualization
of the results. The PDP for a certain pair of θ and φ is defined as

h(θ, φ, τ) =

L−1∑
l=0

αlδ(τ − τl),

θmin ≤ θ ≤ θmax, φmin ≤ φ ≤ φmax (1)

whereαl is the power gain for the l-th path, τl is the path arrival time,
L is the number of the arrival paths, and δ(τ) is the Dirac function.

Now, we define the features of h(θ, φ, τ) that we used to charac-
terize all the directional PDPs. All of the features are evaluated for
a single PDP at a certain pair of θ and φ. We will drop the argument
to simplify the expressions. The channel gain, G, is evaluated as

G =

L−1∑
l=0

αl. (2)

The dynamic range of the PDP is defined as the ratio of the
largest MPC to the smallest MPC. It is evaluated in dB as

R = 10 log
max0≤l≤L−1(αl)

min0≤l≤L−1(αl)
. (3)



The mean delay is the first moment of the power delay profile
and is evaluated as follows

τmean =
1

G

L−1∑
l=0

αlτl. (4)

The root-mean-squared (RMS) delay spread is the second mo-
ment of the power delay profile and is evaluated as follows

τRMS =

√√√√ 1

G

(
L−1∑
l=0

αlτ2l − τ2mean

)
. (5)

3.2. Data Clustering

The first step in clustering is to normalize the features to the range
of 0 to 1. Then, we perform spectral clustering over the vectors of
features corresponding to each beam direction. Generally, spectral
clustering is a powerful technique in clustering nonlinear and insepa-
rable data and where non-convex clusters are allowed [13]. We have
used the Scikit-learn implementation for the spectral clustering al-
gorithm [14]. We denote the feature vector, corresponding to a PDP
in a specific beam direction defined by a pair of azimuth and eleva-
tion angles, by Zj , where j is the index of the PDP. The length of
the vector Zj is the number of features, Nf, and the total number of
PDPs to be clustered is NH.

The spectral clustering algorithm requires a similarity metric and
a number of output clusters. In this work, we consider linear similar-
ity although other similarity metrics can be considered as well. The
pairwise linear similarity between feature vectors evaluated through
their dot product may be given as

SLjk = ZT
jZk, (6)

where (∗)T is the transpose of the vector.
Finally, the number of the clusters is obtained through a recur-

sive search for the maximum Silhouette score [15]. The Silhouette
score measures how closely-related an object is to its own cluster
against the other clusters. We repeat clustering over various values
of N and keep the clusters that achieve the highest Silhouette score.

3.3. Exemplar Extraction

The last phase of the approach is to extract an exemplar PDP from
each of the clusters. The exemplar is a member of a cluster of PDPs.
The initial used scheme defines the exemplar as the PDP with short-
est mean feature-distance to other cluster members. In a cluster Hi,
the exemplar PDP, denoted by ĥi(τ), is the one corresponding to the
feature vector Ẑi. The value of Ẑi is evaluated as

Ẑi = argmin
Zk s.t. k∈Hi

1

|Hi| − 1

∑
Zj 6=Zk

Zj s.t. j∈Hi

√
||Zk − Zj ||2. (7)

This exemplar represents the closest cluster member to the center of
mass of the cluster where the masses of all the clusters members are
equal.

Moreover, various weighting factors can impact the exemplar
extraction process, where the mass of each member of the cluster
can vary based on the importance of various features. One example
is to scale the cluster members’ mass based on their total channel
power gain value, G. Hence, we introduce, to the exemplar extrac-
tion process, a channel-gain based scaling with a power-exponent

tuning. We define power-exponent σ to be the exponent to the PDP
power gainG that is multiplied by the minimization argument in (7).
The extracted exemplar in this case with a power exponent of σ is
evaluated as follows

Ẑi = argmin
Zk s.t. k∈Hi

Gσk
|Hi| − 1

∑
Zj 6=Zk

Zj s.t. j∈Hi

√
||Zk − Zj ||2, (8)

where Gk is the total channel-power gain of the PDP corresponding
to Zk. For high power-exponent values, this scheme will pick the
exemplar with the highest channel-power-gain value in the cluster.

4. RESULTS

In this section, we show the results obtained by running the exemplar
extraction approach over the channel measurements. Two sets of
results are included: i) Linear similarity metric with σ = 0, and
ii) Linear similarity metric with σ = 0.5. In each set of results,
we show two figures. The first shows the features of the resulting
clusters through four scatter plot sub-figures: a) RMS delay spread
(ns) against dynamic range (dB), b) RMS delay spread (ns) against
mean delay (ns), c) mean delay (ns) against dynamic range (dB), and
d) the directions in azimuth and elevation (degrees) of clusters. All
cluster members have the same color with a corresponding exemplar
marked with a specific shape. In the second figure, the PDPs of the
exemplars are shown.
4.1. Linear Similarity with σ = 0

(a) RMS delay spread against
dynamic range

(b) RMS delay spread against
mean delay

(c) Mean delay against
dynamic range

(d) Azimuth against elevation
angles

Fig. 3. Clustered data with marked exemplars at σ = 0

In Fig. 3, we draw the clustering result with the exemplars marked
on the figures. In this case, we found that the optimal number of
clusters is four, where the Silhouette score is 0.32. The value of
Silhouette score can be used to demonstrate the effectiveness of the
proposed clustering approach, because it measures how closely re-
lated a directional PDP is to its own cluster against the other clusters
with respect to the used features.

The first cluster, in green, is characterized by low mean delay,
low RMS delay spread, and low dynamic range. The second clus-
ter, in purple, is characterized by high mean delay, low RMS de-
lay spread, and low dynamic range. The third cluster, in blue, is
characterized by high RMS delay spread, and low dynamic range.



The fourth cluster, in yellow, is characterized by low mean delay,
low RMS delay spread, and high dynamic range. The correspond-
ing exemplars are marked in Fig. 3 with different shapes, namely,
up-pointing triangle, right-pointing triangle, circle, and square, re-
spectively. The PDPs of these exemplars are shown in Fig. 4. This
figure shows that an exemplar PDP reflects the characteristics of the
corresponding cluster. As an example, in Fig. 4(a), the PDP reflects
the case where the PDP has a single peak, which leads to low mean
delay and low RMS delay spread. This peak also has a low channel
gain such that the dynamic range is low as well.

(a) Marked with4 (b) Marked with B

(c) Marked with© (d) Marked with �

Fig. 4. Marked exemplar PDPs corresponding to Fig. 3

4.2. Linear Similarity with σ = 0.5

(a) RMS delay spread against
dynamic range

(b) RMS delay spread against
mean delay

(c) Mean delay against
dynamic range

(d) Azimuth against elevation
angles

Fig. 5. Clustered data with marked exemplars at σ = 0.5

In this set of results, we present in Fig. 5 similar clusters as those
obtained in Fig. 3. However, the increase in the exemplar extraction
power exponent allows us to extract exemplars with higher channel-
power gain and, hence, higher dynamic range. The clusters for the
case of σ = 0.5 are shown in Fig. 5 and the corresponding exemplars
are shown in Fig. 6, where they exhibit higher gain in the MPCs than
the MPCs in Fig. 4. Note that the exemplars in Fig. 6 (a) and (b) look

similar because the change in power-exponent moved the exemplars
to the edges of the clusters and hence close to each other.

(a) Marked with4 (b) Marked with B

(c) Marked with© (d) Marked with �

Fig. 6. Marked exemplar PDPs corresponding to Fig. 5
4.3. Comparison to the Average PDP

In Fig. 7, we show the average PDP of all the measured PDPs as
a benchmark for representing the measured data. Comparing the
exemplars to the average PDP, we observe that each exemplar repre-
sents a group of PDPs with certain features and hence can be used
for testing wireless devices under certain conditions.

Fig. 7. The average PDP over all the directional PDPs
5. CONCLUSIONS

In this paper, we introduced an approach for directional PDP ex-
emplar extraction from measured data for a static, highly reflective
channel. The approach deploys unsupervised spectral clustering for
PDP clustering and uses the delay and power characteristics for ex-
emplar extraction. We have demonstrated that the wireless channel
paths between two points in an industrial environment can have dif-
ferent characteristics depending on orientation. Hence, to operate
in such an environment, a wireless node has to be tested under all
different types of channel characteristics. The proposed approach
serves as a way to compactly represent various feature groups. This
allows the test and assessment of wireless equipment over the exem-
plars without the need to test over all of the different instances of
wireless channel paths or to evaluate the performance over a generic
model that does not capture the specifics of a certain environment.

Disclaimer Certain commercial equipment, instruments, or materi-
als are identified in this paper in order to specify the experimental
procedure adequately. Such identification is not intended to imply
recommendation or endorsement by the National Institute of Stan-
dards and Technology, nor is it intended to imply that the materials
or equipment identified are necessarily the best available for the pur-
pose.
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